Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.198
Filtrar
1.
Parasitol Res ; 123(4): 176, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573530

RESUMO

Giardiasis is a common intestinal infection caused by Giardia duodenalis, which is a major economic and health burden for humans and livestock. Currently, a convenient and effective detection method is urgently needed. CRISPR/Cas12a-based diagnostic methods have been widely used for nucleic acid-based detection of pathogens due to their high efficiency and sensitivity. In this study, a technique combining CRISPR/Cas12a and RPA was established that allows the detection of G. duodenalis in faecal samples by the naked eye with high sensitivity (10-1 copies/µL) and specificity (no cross-reactivity with nine common pathogens). In clinical evaluations, the RPA-CRISPR/Cas12a-based detection assay detected Giardia positivity in 2% (1/50) of human faecal samples and 47% (33/70) of cattle faecal samples, respectively, which was consistent with the results of nested PCR. Our study demonstrated that the RPA-CRISPR/Cas12a technique for G. duodenalis is stable, efficient, sensitive, specific and has low equipment requirements. This technique offers new opportunities for on-site detection in remote and poor areas.


Assuntos
Giardia lamblia , Giardíase , Humanos , Animais , Bovinos , Giardia lamblia/genética , Sistemas CRISPR-Cas , Giardíase/diagnóstico , Giardíase/veterinária , Giardia/genética , Bioensaio
2.
Ecotoxicol Environ Saf ; 276: 116309, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599156

RESUMO

Emerging evidence has suggested that exposure to PM2.5 is a significant contributing factor to the development of chronic obstructive pulmonary disease (COPD). However, the underlying biological effects and mechanisms of PM2.5 in COPD pathology remain elusive. In this study, we aimed to investigate the implication and regulatory effect of biomass fuels related-PM2.5 (BRPM2.5) concerning the pathological process of fibroblast-to-myofibroblast transition (FMT) in the context of COPD. In vivo experimentation revealed that exposure to biofuel smoke was associated with airway inflammation in rats. After 4 weeks of exposure, there was inflammation in the small airways, but no significant structural changes in the airway walls. However, after 24 weeks, airway remodeling occurred due to increased collagen deposition, myofibroblast proliferation, and tracheal wall thickness. In vitro, cellular immunofluorescence results showed that with stimulation of BRPM2.5 for 72 h, the cell morphology of fibroblasts changed significantly, most of the cells changed from spindle-shaped to star-shaped irregular, α-SMA stress fibers appeared in the cytoplasm and the synthesis of type I collagen increased. The collagen gel contraction experiment showed that the contractility of fibroblasts was enhanced. The expression level of TRPC1 in fibroblasts was increased. Specific siRNA-TRPC1 blocked BRPM2.5-induced FMT and reduced cell contractility. Additionally, specific siRNA-TRPC1 resulted in a decrease in the augment of intracellular Ca2+ concentration ([Ca2+]i) induced by BRPM2.5. Notably, it was found that the PI3K inhibitor, LY294002, inhibited enhancement of AKT phosphorylation level, FMT occurrence, and elevation of TRPC1 protein expression induced by BRPM2.5. The findings indicated that BRPM2.5 is capable of inducing the FMT, with the possibility of mediation by PI3K/AKT/TRPC1. These results hold potential implications for the understanding of the molecular mechanisms involved in BRPM2.5-induced COPD and may aid in the development of novel therapeutic strategies for pathological conditions characterized by fibrosis.

3.
Int J Biochem Cell Biol ; 171: 106570, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38588888

RESUMO

Colon cancer has become a global public health challenge, and 5-Fluorouracil (5-FU) chemoresistance is a major obstacle in its treatment. Chemoresistance can be mediated by therapy-induced cellular senescence. This study intended to investigate mechanisms of INHBA (inhibin A) in 5-FU resistance mediated by cellular senescence in colon cancer. Bioinformatics analysis of INHBA expression in colon cancer tissues, survival analysis, and correlation analysis of cellular senescence markers were performed. The effects of INHBA on the biological characteristics and 5-FU resistance of colon cancer cells were examined through loss/gain-of-function and molecular assays. Finally, a xenograft mouse model was built to validate the mechanism of INHBA in vivo. INHBA was upregulated in colon cancer and was significantly positively correlated with cellular senescence markers uncoupling protein 2 (UCP-2), matrix metalloproteinase-1 (MMP-1), dense and erect panicle 1 (DEP1), and p21. Cellular senescence in colon cancer mediated 5-FU resistance. Downregulation of INHBA expression enhanced 5-FU sensitivity in colon cancer cells, inhibited cell proliferation, promoted apoptosis, increased the proportion of cells in G0/G1 phase, and it resulted in a lower proportion of senescent cells and lower levels of the cellular senescence markers interleukin 6 (IL-6) and interleukin 8 (IL-8). Analysis of whether to use the pathway inhibitor Verteporfin proved that INHBA facilitated colon cancer cell senescence and enhanced 5-FU chemoresistance via inactivation of Hippo signaling pathway, and consistent results were obtained in vivo. Collectively, INHBA conferred 5-FU chemoresistance mediated by cellular senescence in colon cancer cells through negative regulation of Hippo signaling.

4.
Med Hypotheses ; 1862024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38617026

RESUMO

Inflamm-aging is a condition of low-grade and chronic systemic inflammation characterized by a systemic increase in multiple inflammatory biomarkers such as tumor necrosis factor (TNF), interleukin 6 (IL-6), C-reactive protein (CRP), and CXCL9 (MIG) in experimental and clinical settings. However, despite the recent identification of extracellular procathepsin L (pCTS-L) as a novel mediator of inflammatory diseases such as sepsis, its possible role in inflamm-aging was previously not investigated. In the present study, we compared blood levels of pCTS-L and other 62 cytokines and chemokines between young and aged Balb/C mice by Western blotting and Cytokine Antibody Arrays. In light of the surprising finding of a marked increase in blood pCTS-L levels in aged mice, we propose that blood pCTS-L levels may serve as another biomarker of inflamm-aging. Given the capacity of pCTS-L in inducing various cytokines (e.g., TNF and IL-6), it will be important to test the hypothetic role of pCTS-L in inflamm-aging under experimental and clinical conditions.

5.
Sci Rep ; 14(1): 8467, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605099

RESUMO

Sepsis is recognized as a major contributor to the global disease burden, but there is a lack of specific and effective therapeutic agents. Utilizing Mendelian randomization (MR) methods alongside evidence of causal genetics presents a chance to discover novel targets for therapeutic intervention. MR approach was employed to investigate potential drug targets for sepsis. Pooled statistics from IEU-B-4980 comprising 11,643 cases and 474,841 controls were initially utilized, and the findings were subsequently replicated in the IEU-B-69 (10,154 cases and 454,764 controls). Causal associations were then validated through colocalization. Furthermore, a range of sensitivity analyses, including MR-Egger intercept tests and Cochran's Q tests, were conducted to evaluate the outcomes of the MR analyses. Three drug targets (PSMA4, IFNAR2, and LY9) exhibited noteworthy MR outcomes in two separate datasets. Notably, PSMA4 demonstrated not only an elevated susceptibility to sepsis (OR 1.32, 95% CI 1.20-1.45, p = 1.66E-08) but also exhibited a robust colocalization with sepsis (PPH4 = 0.74). According to the present MR analysis, PSMA4 emerges as a highly encouraging pharmaceutical target for addressing sepsis. Suppression of PSMA4 could potentially decrease the likelihood of sepsis.


Assuntos
Análise da Randomização Mendeliana , Sepse , Humanos , Sepse/tratamento farmacológico , Sepse/genética , Sistemas de Liberação de Medicamentos , Carga Global da Doença , Nonoxinol , Estudo de Associação Genômica Ampla
6.
Eur J Med Res ; 29(1): 235, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622742

RESUMO

BACKGROUND: Ankle-foot orthoses (AFO) can improve gait posture and walking ability in post-stroke patients. However, the effect of AFO on gait parameters in post-stroke patients according to the Brunnstrom stage of stroke recovery of the lower limbs remains unclear. The study aimed to investigate whether stroke patients with different Brunnstrom stages benefit from wearing AFO. METHODS: Twenty-five post-stroke participants included 18 men (50 ± 13 years) and 7 women (60 ± 15 years). The patients were divided based on Brunnstrom stage III or IV of the lower limbs. All patients underwent the gait and timed up and go (TUG) test using a gait analysis system while walking barefoot or with an AFO. The spatiotemporal and asymmetric parameters were analyzed. RESULTS: All 25 patients completed the study. Significant differences were observed between barefoot and AFO use in TUG time (P < 0.001) but not walking velocity (P > 0.05). The main effect of the swing time ratio was significant in both groups (P < 0.05); however, the main effects of stride length, stance time, and gait asymmetry ratio were nonsignificant (P > 0.05). For barefoot versus AFO, the main effects of stride length (P < 0.05) and swing time (P < 0.01) ratios were significant, whereas those of stance time and gait asymmetry ratio were nonsignificant (P > 0.05). CONCLUSIONS: Post-stroke patients with lower Brunnstrom stages benefitted more from AFO, particularly in gait asymmetry.


Assuntos
Órtoses do Pé , Transtornos Neurológicos da Marcha , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Masculino , Humanos , Feminino , Tornozelo , Estudos Cross-Over , Fenômenos Biomecânicos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Marcha , Articulação do Tornozelo
7.
Sci Bull (Beijing) ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38637226

RESUMO

Currently, clinically available coronary CT angiography (CCTA) derived fractional flow reserve (CT-FFR) is time-consuming and complex. We propose a novel artificial intelligence-based fully-automated, on-site CT-FFR technology, which combines the automated coronary plaque segmentation and luminal extraction model with reduced order 3 dimentional (3D) computational fluid dynamics. A total of 463 consecutive patients with 600 vessels from the updated China CT-FFR study in Cohort 1 undergoing both CCTA and invasive fractional flow reserve (FFR) within 90 d were collected for diagnostic performance evaluation. For Cohort 2, a total of 901 chronic coronary syndromes patients with index CT-FFR and clinical outcomes at 3-year follow-up were retrospectively analyzed. In Cohort 3, the association between index CT-FFR from triple-rule-out CTA and major adverse cardiac events in patients with acute chest pain from the emergency department was further evaluated. The diagnostic accuracy of this CT-FFR in Cohort 1 was 0.82 with an area under the curve of 0.82 on a per-patient level. Compared with the manually dependent CT-FFR techniques, the operation time of this technique was substantially shortened by 3 times and the number of clicks from about 60 to 1. This CT-FFR technique has a highly successful (> 99%) calculation rate and also provides superior prediction value for major adverse cardiac events than CCTA alone both in patients with chronic coronary syndromes and acute chest pain. Thus, the novel artificial intelligence-based fully automated, on-site CT-FFR technique can function as an objective and convenient tool for coronary stenosis functional evaluation in the real-world clinical setting.

8.
World J Psychiatry ; 14(3): 421-433, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38617989

RESUMO

BACKGROUND: While the impact of depression on cognition is well-documented, the relationship between feelings and cognition has received limited attention. AIM: To explore the potential association between feelings and cognition with a two-sample Mendelian randomization (MR) analysis. METHODS: Our analysis utilized genome-wide association data on various feelings (fed-up feelings, n = 453071; worrier/anxious feelings, n = 450765; guilty feelings, n = 450704; nervous feelings, n = 450700; sensitivity/hurt feelings, n = 449419; miserableness, n = 454982; loneliness/isolation, n = 455364; happiness, n = 152348) in the European population and their impact on cognitive functions (intelligence, n = 269867). Conducting a univariable MR (UVMR) analysis to assess the relationship between feelings and cognition. In this analysis, we applied the inverse variance weighting (IVW), weighted median, and MR Egger methods. Additionally, we performed sensitivity analysis (leave-one-out analysis), assessed heterogeneity (using MR-PRESSO and Cochran's Q test), and conducted multiple validity test (employing MR-Egger regression). Subsequently, a multivariable MR (MVMR) analysis was employed to examine the impact of feelings on cognition. IVW served as the primary method in the multivariable analysis, complemented by median-based and MR-Egger methods. RESULTS: In this study, UVMR indicated that sensitivity/hurt feelings may have a negative causal effect on cognition (OR = 0.63, 95%CI: 0.43-0.92, P = 0.017). After adjustment of other feelings using MVMR, a direct adverse causal effect on cognition was observed (ORMVMR = 0.39, 95%CI: 0.17-0.90, PMVMR = 0.027). While a potential increased risk of cognitive decline was observed for fed-up feelings in the UVMR analysis (ORUVMR = 0.64, 95%CI: 0.42-0.97, PUVMR = 0.037), this effect disappeared after adjusting for other feelings (ORMVMR = 1.42, 95%CI: 0.43-4.74, PMVMR = 0.569). These findings were generally consistent across MV-IVW, median-based, and MR-Egger analyses. MR-Egger regression revealed pleiotropy in the impact of worrier/anxious feelings on cognition, presenting a challenge in identifying the effect. Notably, this study did not demonstrate any significant impact of guilty feelings, nervous feelings, miserableness, or loneliness/isolation on cognition. Due to a limited number of instrumental variables for happiness, this study was unable to analyze the relationship between happiness and cognition. CONCLUSION: This MR study finds that sensitivity/hurt feelings are associated with cognitive decline, while the link between worrier/anxious feelings and cognition remains inconclusive. Insufficient evidence supports direct associations between happiness, guilty feelings, nervous feelings, miserableness, loneliness/isolation, and cognition.

9.
Front Immunol ; 15: 1357307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590518

RESUMO

The 2019 novel coronavirus, SARS-CoV-2, was highly prevalent in China as of December 2022, causing a range of symptoms, predominantly affecting the respiratory tract. While SARS-CoV-2 infection in children is generally mild, severe cases, especially in infants, are rare. We present a case of a previously healthy 7-month-old infant who developed cerebral infarction and coagulation dysfunction three days after COVID-19 onset. Clinically, the infant had weakness in the left limbs and pinpoint bleeding spots. A cranial magnetic resonance imaging showed ischemic strokes in the right basal ganglia and thalamus. Laboratory tests indicated thrombocytopenia and coagulation dysfunction. Inflammatory cytokines like interleukin-10 were elevated, with increased CD3+, CD4+, and CD8+ T lymphocytes but decreased CD3- CD16+ CD56+ natural killer cells. Treatment included mannitol, dexamethasone, oral aspirin, and vitamins B1 and B6 for reducing intracranial pressure, antiinflammation, anticoagulation, and nerve support, respectively. During the recovery phase, rehabilitation therapy focused on strength training, fine motor skills, and massage therapy. The infant gradually improved and successfully recovered. While rare, such cases can lead to severe complications. These combined efforts were instrumental in achieving significant functional recovery in the patient, demonstrating that even in severe instances of pediatric cerebral infarction due to COVID-19, positive outcomes are attainable with early and comprehensive medical response.


Assuntos
Transtornos da Coagulação Sanguínea , COVID-19 , Lactente , Humanos , Criança , COVID-19/complicações , SARS-CoV-2 , Citocinas , Infarto Cerebral/etiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-38518156

RESUMO

Objective: To explore the role of miR-29 in bladder cancer, released by exosomes into brain microglia to influence its polarization and promote angiogenesis. This, in turn, would help design therapeutic strategies for brain metastasis caused by bladder cancer. Methods: The relative expression of miR-29 in normal bladder and bladder cancer cells was compared by qPCR technology, and the difference of specific binding between PI3K and has-miR-29a in the NC group and mimic group was verified by luciferase activity. Bladder cancer cells T24 were transfected with miR-29 NC, mimic, or neferine and divided into miR-29-NC group, miR-29-mimic group, miR-29-NC-neferine group, and miR-29-mimic-neferine group. Then they were co-cultured with microglia BV2 in a 1% hypoxia environment. The protein expressions of p-PI3K, p-AKT, p-AMPK, p-PGC-1α, p-PPARγ, CD206, and HIF1α in glial cells BV2 were detected by Western blot. The effect of each group on angiogenesis was observed by the tube formation experiment. A glioma mouse model was established, and the number of blood vessels and tumor proliferation were observed by pathological section H&E staining, to assess the effect of miR-29 on angiogenesis. Results: qPCR and dual-luciferase reporter assay showed that miR-29 was highly expressed in bladder cancer compared with normal bladder cells. The binding of miR-29 to PI3K led to the degradation of PI3K mRNA. Protein expression analysis showed that miR-29 inhibited PI3K and p-AKT in bladder cancer cells, and promoted the expression of p-AMPK, p-PGC-1α, p-PPARγ, CD206, and HIF1α. In vivo experiments demonstrated that miR-29 could promote the cell volume of bladder cancer cells and increase the number of blood vessels in bladder cancer cells, while neferine could inhibit the above effects. Conclusion: miR-29 can regulate PI3K/AMPK/PGC-1α/PPAR-γ signaling in microglial cells, promote their polarization to M2, and ultimately promote neovascularization in bladder cancer.

11.
Am J Clin Exp Immunol ; 13(1): 1-11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38496359

RESUMO

Chronic obstructive pulmonary disease (COPD) is marked by both lung-related and systemic symptoms, notably chronic inflammation. Despite pulmonary rehabilitation (PR) being a critical treatment for COPD, its influence on systemic inflammation remains unclear. This meta-analysis was conducted to assess PR's effect on circulating inflammatory markers in COPD patients. We systematically reviewed databases like PubMed, EMBASE, and Web of Science to select randomized controlled trials and observational studies that investigated the impact of PR on systemic inflammation. We calculated the mean differences (MD) in inflammatory markers before and after PR using a random-effects model and assessed the risk of bias with established tools. Our study included six investigations (four RCTs, two observational) with 147 COPD patients. Our findings show notable increases in IL-6 (MD 0.44, 95% CI 0.17-0.70, P = 0.001), CRP (MD 0.56, 95% CI 0.31-0.81, P<0.00001), and TNF-alpha (MD 0.41, 95% CI 0.12-0.70, P = 0.005) following PR. However, sensitivity analysis pinpointed the study by El-Kader et al. as a key influence on these results. Excluding this study led to nonsignificant changes. Thus, our meta-analysis uncovers an unanticipated rise in inflammatory markers post-PR in COPD patients, questioning the assumed anti-inflammatory benefits of PR.

12.
Adv Sci (Weinh) ; : e2309348, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498682

RESUMO

Tertiary lymphoid structure (TLS) can predict the prognosis and sensitivity of tumors to immune checkpoint inhibitors (ICIs) therapy, whether it can be noninvasively predicted by radiomics in hepatocellular carcinoma with liver transplantation (HCC-LT) has not been explored. In this study, it is found that intra-tumoral TLS abundance is significantly correlated with recurrence-free survival (RFS) and overall survival (OS). Tumor tissues with TLS are characterized by inflammatory signatures and high infiltration of antitumor immune cells, while those without TLS exhibit uncontrolled cell cycle progression and activated mTOR signaling by bulk and single-cell RNA-seq analyses. The regulators involved in mTOR signaling (RHEB and LAMTOR4) and S-phase (RFC2, PSMC2, and ORC5) are highly expressed in HCC with low TLS. In addition, the largest cohort of HCC patients is studied with available radiomics data, and a classifier is built to detect the presence of TLS in a non-invasive manner. The classifier demonstrates remarkable performance in predicting intra-tumoral TLS abundance in both training and test sets, achieving areas under receiver operating characteristic curve (AUCs) of 92.9% and 90.2% respectively. In summary, the absence of intra-tumoral TLS abundance is associated with mTOR signaling activation and uncontrolled cell cycle progression in tumor cells, indicating unfavorable prognosis in HCC-LT.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38503484

RESUMO

BACKGROUND: This study aimed to investigate the efficacy of circuits-based paired associative stimulation (PAS) in adults with amnestic mild cognitive impairment (aMCI). METHODS: We conducted a parallel-group, randomised, controlled clinical trial. Initially, a cohort of healthy subjects was recruited to establish the cortical-hippocampal circuits by tracking white matter fibre connections using diffusion tensor imaging. Subsequently, patients diagnosed with aMCI, matched for age and education, were randomly allocated in a 1:1 ratio to undergo a 2-week intervention, either circuit-based PAS or sham PAS. Additionally, we explored the relationship between changes in cognitive performance and the functional connectivity (FC) of cortical-hippocampal circuits. RESULTS: FCs between hippocampus and precuneus and between hippocampus and superior frontal gyrus (orbital part) were most closely associated with the Auditory Verbal Learning Test (AVLT)_N5 score in 42 aMCI patients, thus designated as target circuits. The AVLT_N5 score improved from 2.43 (1.43) to 5.29 (1.98) in the circuit-based PAS group, compared with 2.52 (1.44) to 3.86 (2.39) in the sham PAS group (p=0.003; Cohen's d=0.97). A significant decrease was noted in FC between the left hippocampus and left precuneus in the circuit-based PAS group from baseline to postintervention (p=0.013). Using a generalised linear model, significant group×FC interaction effects for the improvements in AVLT_N5 scores were found within the circuit-based PAS group (B=3.4, p=0.017). CONCLUSIONS: Circuit-based PAS effectively enhances long-term delayed recall in adults diagnosed with aMCI, which includes individuals aged 50-80 years. This enhancement is potentially linked to the decreased functional connectivity between the left hippocampus and left precuneus. TRIAL REGISTRATION NUMBER: ChiCTR2100053315; Chinese Clinical Trial Registry.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38532220

RESUMO

Antioxidants are ubiquitous in various environmental samples, leading to increasing concern regarding their potential risk to environments or humans. However, there is dearth of information regarding the environmental fate of antioxidants and unknown/unexpected antioxidants in the environment. Here, we established a compound database (CDB) containing 320 current-used antioxidants by collecting the chemicals from EPA's functional use database and published documents. Physical-chemical characteristics of these antioxidants were estimated, and 19 ones were considered as persistent and bioaccumulative (P&B) substances. This CDB was further coupled with high resolution mass spectrometry (HRMS) technique, which was employed for suspect screening of antioxidants in extracts of sediments (n = 88) collected from Taihu Lake basin. We screened 119 HRMS features that can match 135 chemical formulas in the CDB, and 20 out of them exhibited the detection frequencies ≥ 90%. The total concentrations of suspect antioxidants in sediments ranged from 6.41 to 830 ng/g dw. Statistical analysis demonstrated that concentrations of suspect antioxidants in Taihu Lake were statistically significantly lower than those in Shihu and Jiulihu Lake, but greater than those from other small lakes. Collectively, this study provided a CDB that could be helpful for further monitoring studies of antioxidant in the environments, and also provided the first evidence regarding the ubiquity of antioxidants in aquatic environment of Taihu Lake basin.

15.
Chem Soc Rev ; 53(7): 3273-3301, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507263

RESUMO

Oral diseases are prevalent but challenging diseases owing to the highly movable and wet, microbial and inflammatory environment. Polymeric materials are regarded as one of the most promising biomaterials due to their good compatibility, facile preparation, and flexible design to obtain multifunctionality. Therefore, a variety of strategies have been employed to develop materials with improved therapeutic efficacy by overcoming physicobiological barriers in oral diseases. In this review, we summarize the design strategies of polymeric biomaterials for the treatment of oral diseases. First, we present the unique oral environment including highly movable and wet, microbial and inflammatory environment, which hinders the effective treatment of oral diseases. Second, a series of strategies for designing polymeric materials towards such a unique oral environment are highlighted. For example, multifunctional polymeric materials are armed with wet-adhesive, antimicrobial, and anti-inflammatory functions through advanced chemistry and nanotechnology to effectively treat oral diseases. These are achieved by designing wet-adhesive polymers modified with hydroxy, amine, quinone, and aldehyde groups to provide strong wet-adhesion through hydrogen and covalent bonding, and electrostatic and hydrophobic interactions, by developing antimicrobial polymers including cationic polymers, antimicrobial peptides, and antibiotic-conjugated polymers, and by synthesizing anti-inflammatory polymers with phenolic hydroxy and cysteine groups that function as immunomodulators and electron donors to reactive oxygen species to reduce inflammation. Third, various delivery systems with strong wet-adhesion and enhanced mucosa and biofilm penetration capabilities, such as nanoparticles, hydrogels, patches, and microneedles, are constructed for delivery of antibiotics, immunomodulators, and antioxidants to achieve therapeutic efficacy. Finally, we provide insights into challenges and future development of polymeric materials for oral diseases with promise for clinical translation.


Assuntos
Anti-Infecciosos , Polímeros , Polímeros/química , Materiais Biocompatíveis/química , Anti-Inflamatórios , Fatores Imunológicos
16.
Front Immunol ; 15: 1368448, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550581

RESUMO

The pathogenic mechanisms of bacterial infections and resultant sepsis are partly attributed to dysregulated inflammatory responses sustained by some late-acting mediators including the procathepsin-L (pCTS-L). It was entirely unknown whether any compounds of the U.S. Drug Collection could suppress pCTS-L-induced inflammation, and pharmacologically be exploited into possible therapies. Here, we demonstrated that a macrophage cell-based screening of a U.S. Drug Collection of 1360 compounds resulted in the identification of progesterone (PRO) as an inhibitor of pCTS-L-mediated production of several chemokines [e.g., Epithelial Neutrophil-Activating Peptide (ENA-78), Monocyte Chemoattractant Protein-1 (MCP-1) or MCP-3] and cytokines [e.g., Interleukin-10 (IL-10) or Tumor Necrosis Factor (TNF)] in primary human peripheral blood mononuclear cells (PBMCs). In vivo, these PRO-entrapping 2,6-dimethal-ß-cyclodextrin (DM-ß-CD) nanoparticles (containing 1.35 mg/kg PRO and 14.65 mg/kg DM-ß-CD) significantly increased animal survival in both male (from 30% to 70%, n = 20, P = 0.041) and female (from 50% to 80%, n = 30, P = 0.026) mice even when they were initially administered at 24 h post the onset of sepsis. This protective effect was associated with a reduction of sepsis-triggered accumulation of three surrogate biomarkers [e.g., Granulocyte Colony Stimulating Factor (G-CSF) by 40%; Macrophage Inflammatory Protein-2 (MIP-2) by 45%; and Soluble Tumor Necrosis Factor Receptor I (sTNFRI) by 80%]. Surface Plasmon Resonance (SPR) analysis revealed a strong interaction between PRO and pCTS-L (KD = 78.2 ± 33.7 nM), which was paralleled with a positive correlation between serum PRO concentration and serum pCTS-L level (ρ = 0.56, P = 0.0009) or disease severity (Sequential Organ Failure Assessment, SOFA; ρ = 0.64, P = 0.0001) score in septic patients. Our observations support a promising opportunity to explore DM-ß-CD nanoparticles entrapping lipophilic drugs as possible therapies for clinical sepsis.


Assuntos
Catepsina L , Precursores Enzimáticos , Sepse , beta-Ciclodextrinas , Humanos , Masculino , Feminino , Camundongos , Animais , Progesterona , Leucócitos Mononucleares
17.
J Affect Disord ; 355: 50-56, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552912

RESUMO

BACKGROUND: Delirium is an acute or subacute change in mental status caused by various factors. We evaluated the causal relationship between leisure sedentary behaviors (LSBs) and delirium. METHODS: A two-sample Mendelian randomization (MR) study was performed to evaluate the causal relationship between sedentary behaviors (time spent watching television, time spent using computer, and time spent driving) and delirium. Statistical information for the associations between single nucleotide polymorphisms (SNPs) and the traits of interest was obtained from independent consortia that focused on European populations. The dataset for LSBs was acquired from genome-wide association studies (GWAS) comprising a substantial sample size: 437887 samples for time spent watching television, 360,895 for time spent using computer, and 310,555 for time spent driving. A GWAS with 1269 delirium cases and 209,487 controls was used to identify genetic variation underlying the time of LSBs. We used five complementary MR methods, including inverse variance weighted method (IVW), MR-Egger, weighted median, weighted mode, and simple mode. RESULTS: Genetically predicted time spent watching television (odds ratio [OR]: 2.921, 95 % confidence interval [CI]: 1.381-6.179) demonstrated significant association with delirium (P = 0.005), whereas no significant associations were observed between time spent using computer (OR: 0.556, 95 % CI: 0.246-1.257, P = 0.158) and time spent driving (OR: 1.747, 95 % CI: 0.09-3. 40, P = 0.713) and delirium. Sensitivity analyses supported a causal interpretation, with limited evidence of significant bias from genetic pleiotropy. Moreover, our MR assumptions appeared to be upheld, enhancing the credibility of our conclusions. LIMITATIONS: Larger sample sizes are needed to validate the findings of our study. CONCLUSION: Time spent watching television is a significant risk factor for delirium. Reducing television time may be an important intervention for those at higher risk of delirium.


Assuntos
Delírio , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Comportamento Sedentário , Recreação , Delírio/etiologia , Delírio/genética
18.
Biochem Biophys Res Commun ; 707: 149726, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38493747

RESUMO

Real-time reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is an important method for the early diagnosis of coronavirus disease 2019 (COVID-19). This study investigated the effects of storage solution, temperature and detection time on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid detection by RT-qPCR. Various concentrations of SARS-CoV-2 were added to inactive and non-inactive storage solution and the viral suspensions were stored at various temperatures (room temperature, 4, -20 and -80 °C). Then, at five different detection time points, the Ct values were determined by RT-qPCR. Active and inactive storage solutions and storage temperature have a great impact on the detection of N gene of SARS-CoV-2 at different concentration corridors but have little impact on the ORF gene. The storage time has a greater impact on the N gene and ORF gene at high concentrations but has no effect on the two genes at low concentrations. In conclusion, storage temperature, storage time and storage status (inactivated, non-inactivated) have no effect on the nucleic acid detection of SARS-CoV-2 at the same concentration. For different concentrations of SARS-CoV-2, the detection of N gene is mainly affected.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Temperatura , RNA Viral/genética , RNA Viral/análise , Teste para COVID-19 , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase em Tempo Real/métodos
19.
J Inflamm Res ; 17: 1349-1364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434585

RESUMO

Background: Sepsis-associated acute kidney injury (SA-AKI) is a common complication in patients with sepsis, triggering high morbidity and mortality. Maresin-1 (MaR1) is a pro-resolution lipid mediator that promotes the resolution of acute inflammation and protects organs from inflammation. Methods: In this study, we established an SA-AKI model using cecal ligation and puncture (CLP) and investigated the effect and mechanism of MaR1. The blood and kidneys were harvested 24 hours after surgery. The blood biochemical/routine indicators, renal function, SA-AKI-related pathophysiological processes, and AMPK/SIRT3 signaling in septic mice were observed by histological staining, immunohistochemical staining, Western blot, qPCR, ELISA and TUNEL Assay. Results: MaR1 treatment alleviated kidney injury in septic mice, reflected in improved pathological changes in renal structure and renal function. MaR1 treatment decreased the levels of serum creatinine (sCr) and blood urea nitrogen (BUN) and the expressions of KIM-1, NGAL and TIMP-2, which were related to kidney injury, while inhibited the expressions of inflammatory factors TNF-α, IL-1ß and IL-6. The expression of endoplasmic reticulum stress-related indicators p-PERK/PERK, GRP78, p-EIF2α/EIF2α, ATF4, CHOP, and pyroptosis-related indicators Caspase-1, NLRP3, GSDMD, IL-18, and IL-1ß also decreased after MaR1 treatment. The mechanism may be related to the activation of the AMPK/SIRT3 signaling pathway, and an AMPK inhibitor (compound C) partially reverses MaR1's protective effects in septic mice. Conclusion: Taken together, these findings suggest that MaR1 may partially ameliorate SA-AKI by activating the AMPK/SIRT3 signaling pathway, providing a potential new perspective for research on SA-AKI.

20.
Adv Sci (Weinh) ; : e2307269, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445899

RESUMO

Surface modification is an important approach to improve osseointegration of the endosseous implants, however it is still desirable to develop a facile yet efficient coating strategy. Herein, a metal-phenolic network (MPN) is proposed as a multifunctional nanocoating on titanium (Ti) implants for enhanced osseointegration through early immunomodulation. With tannic acid (TA) and Sr2+ self-assembled on Ti substrates, the MPN coatings provided a bioactive interface, which can facilitate the initial adhesion and recruitment of bone marrow mesenchymal stem cells (BMSCs) and polarize macrophage toward M2 phenotype. Furthermore, the TA-Sr coatings accelerated the osteogenic differentiation of BMSCs. In vivo evaluations further confirmed the enhanced osseointegration of TA-Sr modified implants via generating a favorable osteoimmune microenvironment. In general, these results suggest that TA-Sr MPN nanocoating is a promising strategy for achieving better and faster osseointegration of bone implants, which can be easily utilized in future clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...